
Series Datasheet - SIL RF Reed Relays

www.andiantech.com

SIL RF Series Reed Relays

- Features: Radio Frequency Single In-Line Relay up to 1.5 GHz, Coax Screen for Z = 50 Ohm Impedance
- > Applications: In-Circuit Tester, High Frequency Applications & Others
- Markets: Telecommunication, Security, Test and Measurement & Others

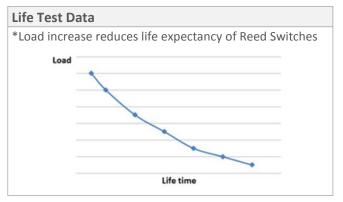
Customer Options	Switch Model	Heit	
Contact Data	72	Unit	
Rated Power (max.) Any DC combination of V&A not to exceed their individual max.'s	10	W	
Switching Voltage (max.) DC or peak AC	200	V	
Switching Current (max.) DC or peak AC	0.4	А	
Carry Current (max.) DC or peak AC	0.5	А	
Contact Resistance (max.) @ 0.5V & 50mA	150	mOhm	
Breakdown Voltage (min.) According to EN60255-5	0.23	kVDC	
Operating Time (max.) Incl. Bounce; Measured with w/ Nominal Voltage	0.6	ms	
Release Time (max.) Measured with no Coil Excitation	0.1	ms	
Insulation Resistance (typ.) Rh<45%, 100V Test Voltage	10 ¹⁰	Ohm	
Capacitance (typ.) @ 10kHz across open Switch	0.2	pF	

Series Datasheet – SIL RF Reed Relays

www.andiantech.com

Coil Data		Coil Voltage	Coil Resistance	Pull-In Voltage	Drop-Out Voltage	Nominal Coil Power
Contact Form	Switch Model	(nom.)	(typ.)	(max.)	(min.)	(typ.)
Ur	nit	VDC	Ohm	VDC	VDC	mW
1A	72	05	500	3.5	0.75	50
		12	1,000	8.4	1.8	144
The Pull-In / Drop-Out Voltage and Coil Resistance will change at rate of 0.4% per °C.						

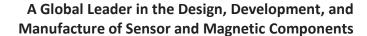
Environmental Data	Unit	
Shock Resistance (max.) 1/2 sine wave duration 11ms	50	g
Vibration Resistance (max.)	20	g
Operating Temperature	-20 to 70	°C
Storage Temperature	-35 to 95	°C
Soldering Temperature (max.) 5 sec. max.	260	°C

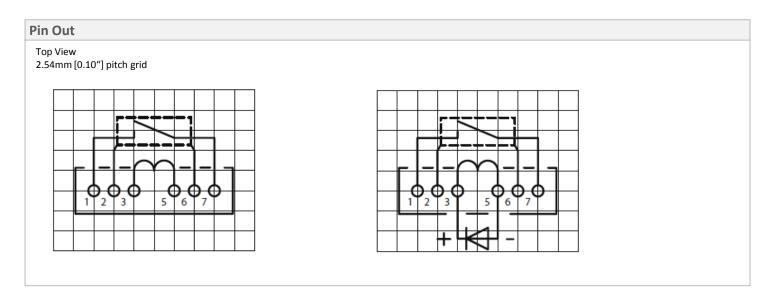

Handling & Assembly Instructions

- Switching inductive and/or capacitive loads create voltage and/or current peaks, which may damage the relay.

 Protective circuits need to be used.
- External magnetic fields needs to be taken into consideration, including a too high packing density. This may influence the relays' electrical characteristics.
- Mechanical shock impacts e.g. dropping the relays may cause immediate or post-installation failure.
- Wave soldering: maximum 260°/5 seconds.
- Reflow soldering: Recommendations given by the soldering paste manufacturer need to be considered as well as the temperature limits of other components/processes.

Glossary Contact Form					
Form A	NO = Normally Open Contacts SPST = Single Pole Single Throw				
Form B	NC = Normally Closed Contacts SPST = Single Pole Single Throw				
Form C	Changeover SPDT = Single Pole Double Throw				





Series Datasheet – SIL RF Reed Relays

www.andiantech.com

